Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
An. acad. bras. ciênc ; 78(3): 475-484, Sept. 2006. ilus
Article in English | LILACS | ID: lil-433715

ABSTRACT

Toxoplasma gondii se multiplica dentro do vacúolo parasitóforo que não é reconhecido pela defesa primária não oxidativa de células hospedeiras: a fusão com organelas ácidas. Estudos anteriores mostraram que hidroxiuréia interrompeu a multiplicação dos parasitos intracelulares causando sua eliminação. No presente trabalho nós investigamos o mecanismo celular envolvido na destruição do Toxoplasma gondii intracelular. Marcadores vitais fluorescentes foram usados para observar a possível acidificação do vacúolo parasitóforo contendo Toxoplasma gondii na presença de hidroxiuréia. Células Vero infectadas com taquizoítos foram tratadas com hidroxiuréia por 12, 24 ou 48 horas. Fluorescência indicativa de acidificação foi observada no vacúolo parasitóforo quando as culturas foram incubadas na presença de laranja de acridina. Lyso Tracker red foi usado para determinar se os lisossomos estavam envolvidos no processo de acidificação. Uma fluorescência intensa foi observada depoisde 12 e 24 horas de incubação com hidroxiuréia, alcançando uma intensidade maior após 48 horas de tratamento. Citoquímica ultraestrutural para localização da enzima fosfatase ácida lisossomal foi realizada. As culturas infectadas e tratadas apresentaram produto de reação em vesículas se fundindo com o vacúolo ou associado com parasitas intravacuolares. Estes resultados sugerem que a fusão com lisossomos e acidificação do vacúoloparasitóforo causa a destruição dos parasitos na presença de hidroxiuréia.


Subject(s)
Animals , Mice , Hydroxyurea/pharmacology , Toxoplasma/drug effects , Vacuoles/parasitology , Chlorocebus aethiops , Host-Parasite Interactions , Hydrogen-Ion Concentration , Microscopy, Confocal , Microscopy, Electron, Transmission , Microscopy, Fluorescence , Time Factors , Toxoplasma/physiology , Vero Cells , Vacuoles/ultrastructure
2.
Genet. mol. biol ; 25(4): 471-475, Dec. 2002. ilus
Article in English | LILACS | ID: lil-330607

ABSTRACT

The yellow passion fruit, Passiflora edulis f. flavicarpa, is one of the most important Brazilian fruit crops. It is an allogamous, diploid, and self-incompatible species. It has hermaphrodite, solitary flowers, located in the leaf axils and protected by leaf bracts. The flower has an androgynophore, which is a straight stalk supporting its reproductive parts. There are usually five anthers, located at the tip of each of the five filaments. The ovary is borne just above the filaments, at the top of the androgynophore; there are three styles that are united at their base, and at the top there are three stigmas. The objective of this research was to observe embryo sac development in yellow passion flowers. Ovaries at different stages of development were fixed in FAA (formalin, acetic acid and alcohol solution), hydrated, stained with Mayer's hemalum, and dehydrated. Ovules were cleared by using methyl salicylate, mounted on slides, and observed through a confocal scanning laser microscope. The yellow passion fruit ovule is bitegmic, crassinucellate, and anatropous, and its gametophyte development is of the Polygonum type. After meiosis, functional megaspores under go three successive mitotic divisions, resulting in an eight-nucleate megagametophyte: the egg apparatus at the micropylar end, two polar nuclei at the cell center, and three antipodals at the chalazal end. The egg apparatus is formed by an egg cell and two synergids, each with a filiform apparatus. The mature embryo sac has an egg cell, two synergids, two polar nuclei, and three antipodes, as has been described for most angiosperms


Subject(s)
Glycine , Ovum/growth & development , Passiflora/genetics , Yolk Sac , Microscopy, Confocal , Passiflora/embryology
3.
Ciênc. cult. (Säo Paulo) ; 44(1): 51-2, Jan.-Feb. 1992. ilus
Article in English | LILACS | ID: lil-188255

ABSTRACT

Electron microscopic observations of Vero cells infected with mycoplasma showed a large concentration of small electron dense granules in their cytoplasm. The application of the periodic acid-thiosemicarbazide-silver proteinate technique showed that these granules correspond to beta-glycogen particles.


Subject(s)
Vero Cells/ultrastructure , In Vitro Techniques , Mycoplasma Infections , Cytoplasm/ultrastructure , Microscopy, Electron , Periodic Acid
SELECTION OF CITATIONS
SEARCH DETAIL